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Abstract

We consider the problem of approximating normal and
feature sizes of a surface from point cloud data that may
be noisy. These problems are central to many applica-
tions dealing with point cloud data. In the noise-free
case, the normals and feature sizes can be approximated
by the centers of a set of unique large Delaunay balls
called polar balls. In presence of noise, polar balls do
not necessarily remain large and hence their centers may
not be good for normal and feature size approximations.
Earlier works suggest that some large Delaunay balls can
play the role of polar balls. However, these results were
short in explaining how the big Delaunay balls should be
chosen for reliable approximations and how the approx-
imation error depends on various factors. We provide
new analyses that fill these gaps. In particular, they lead
to new algorithms for practical and reliable normal and
feature approximations.

1. Introduction

Recently, a number of algorithms have been designed
for processing point cloud data. Often these algorithms,
as a basic step, estimate the normals and features of
the sampled surface from the given point cloud. For
example, some algorithms [1, 8, 11] need a normal
estimation step for surface reconstruction, and others
estimate the scale of local geometry also called the local
feature size to handle non-uniform samples [9, 14]. In
the noise-free case the problem of normal and feature
size approximations have been well studied [2, 4, 6]. In
the case of noise, optimization based techniques [1, 13]
are known for normal approximations though they do
not have theoretical guarantees. It is known that results
from the noise-free case can be extended by using big
Delaunay balls that can help in estimating normals [8]
with theoretical guarantees. However, it is not known
how the error of approximation depends on different
noise components, and more importantly, how the big
Delaunay balls should be chosen for reliable approx-
imations. The problem for feature approximations in
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presence of noise is much less understood. No reliable
and practical algorithm is known for it. In this paper we
address these open issues.

Motivation and results. Amenta and Bern [2] intro-
duced the concept of poles. These are the furthest
Voronoi vertices from the respective sites on the two
sides of the sampled surface. In terms of the Delaunay
triangulation, poles are the centers of the largest Delau-
nay balls incident to the sample points on both sides of
the sampled surface. These balls are also called the po-
lar balls. Amenta and Bern showed that, in the noise-free
case, the normals can be estimated by the poles. Further,
Amenta, Choi, Kolluri [4] and Boissonnat, Cazals [6]
proved that the poles also approximate the medial axis
and hence local feature sizes can be estimated by dis-
tances to the poles.

In the presence of noise, the above results do not hold
since some of the polar balls can be arbitrarily small
with their centers being arbitrarily close to the surface.
See the top-middle picture in Figure 1. Nevertheless,
Dey and Goswami [8] observed that, under a reasonable
noise model, many Delaunay balls remain big and their
centers can help in approximating the normals. The error
in the normal approximation by big Delaunay balls ob-
viously depends on the sampling density (¢) and also on
the size of the chosen Delaunay balls. A detailed anal-
ysis on these dependencies is missing in earlier works.
First, our analysis provides an error bound that unifies
earlier results. Second, it tells us how to choose big De-
launay balls in practice for reliable normal and, in partic-
ular, feature size approximations for noisy point clouds.

In the noise-free case the choice of the Delaunay balls
is not an issue in normal and feature size approxima-
tions as they are approximated from polar balls which
are almost as big as medial balls. However, in the case
of noise, the choice of Delaunay balls is an issue as all
polar balls are not big. To remain scale independent one
can choose Delaunay balls whose radii are larger than
a threshold determined by some nearest neighbor dis-
tances of the sample points incident on the Delaunay
balls. In order to gauge the viable values of the thresh-
old, it is important to know how the normal and feature
size approximation errors depend on the radii of the De-
launay balls. Our new analysis provides this relation.
We show that normals can be estimated from Delaunay
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Figure 1: Top row: Left: noise-free case, poles are approximating the medial axis and normals well. Middle: A small
noise disturbs the poles significantly resulting in poor normal and medial axis approximation with all poles. Right:
only a subset of big Delaunay balls are chosen, normals though not medial axis are well approximated. Bottom row:
Left: Delaunay balls of bigger size are chosen to exclude unwanted poles, some significant parts of the medial axis are
not approximated. Right: Centers of polar balls chosen with our algorithm approximate the medial axis everywhere.
Approximated feature sizes are indicated in the highlighted boxes.

balls that are not necessarily as big as local feature sizes
(f(-)). In fact, Delaunay balls with radii as small as
ez f(-) are also good for normal estimations. See top
row in Figure 1 for an illustration.

The case for feature estimations in presence of noise
is far more difficult. This is because, unlike normal ap-
proximations, not all centers of Delaunay balls chosen
with a reasonable threshold approximate the medial axis.
Choosing the right ones is hard. If the threshold is rel-
atively small, a number of centers remain which do not
approximate the medial axis. See top-right picture in
Figure 1. On the other hand if the threshold is large, the
medial axis for some parts of the models may not be ap-
proximated at all; see bottom-left picture in Figure 1. As
a result no threshold may exist for which large Delaunay
balls’ centers approximate the medial axis, the DOG data
in Figure 1 and the HORSE data in Figure 8 are two such

examples in two and three dimensions respectively.

We propose a different algorithm to choose the
Delaunay balls for approximating the medial axis. We
consider k-nearest neighbors for some k and take the
largest polar ball’s center among these neighbors to
approximate the medial axis. Our analysis leads to this
algorithm which frees us from the burden of choosing
a size threshold. Our experiments suggest that k& can
be chosen fairly easily, generally in the range of 5 to
10. The most important thing is that a k£ can be found
for which the medial axis is well approximated where
no such size threshold may exist. The bottom row of
Figure 1 illustrates this point.

Previous results. Amenta, Bern and Eppstein [3]
introduced the e-sampling for noise-free case. This
requires each point on the surface to have a sample
point within a distance of ¢ times the local feature size.



When noise is allowed, the sample points need not
lie exactly on the surface and may scatter around it.
Therefore, the sampling model needs to specify both a
tangential scatter, i.e., the sparseness of the sampling
along tangent directions of the surface and also a normal
scatter, i.e., the sparseness of sampling along the normal
directions. Dey and Goswami [8] introduced a noise
model that uses the same sampling parameter € for both
scatters. Kolluri [11] and later Dey and Sun [9] modified
the normal scatter to have 2 dependence. The errors
of normal and feature approximations depend on both
tangential and normal scatters. Therefore, we introduce
two independent parameters € and J for these two
scatters to reveal the dependence of the approximation
errors on these two parameters separately.

Normal approximation: Dey and Goswami [8] and
Mederos et al. [12] showed that when both tangential
and normal scatters are O(g) times the local feature size,
the normals can be approximated with an O(4/€) error if
the chosen Delaunay balls have radius almost as big as
the local feature size. Dey and Sun [9] showed that the
error is O(g) if the normal scatter is only O(g?) times
the local feature size. None of these results specify how
the error depends on the radii of the chosen Delaunay
balls.

In this paper we provide a simple elegant analysis
which shows that the error is 2(3 + 1)O(s + V/¢)
where ) is the radius of the Delaunay ball. Previous
results under different noise models can be derived
from this unified result. One implication of this result
is that Delaunay balls as small as O(e2 + 6%)f(-) can
help in estimating the normals. This relaxes the burden
on setting the parameter for the normal estimation
algorithm.

Feature approximation: Amenta, Bern and Epp-
stein [3] defined the local feature size of a point z on
the surface as the distance of z to the medial axis. Ob-
viously, the local feature size can be estimated if the
medial axis can be approximated. An algorithm for ap-
proximating the medial axis from noisy point clouds ex-
ists [7]. This algorithm approximates the medial axis
with Voronoi faces under a stringent uniform sampling
condition. Selecting Voronoi faces to approximate the
medial axis is not a simple task in practice even for
noise-free case [5, 10] and it is not clear how this al-
gorithm works in practice when noise is present. More-
over, for estimating the local feature size a continuous
approximation with Voronoi faces is an overkill. A dis-
crete approximation of the medial axis with a set of
Voronoi vertices serves the purpose equally well. For
the noise-free case, such an approximation was proposed
by Amenta et al. [4] and Boissonnat and Cazals [6]. Re-

cently, Mederos et al. [12] derived some results for noisy
point clouds that have some connections to the local fea-
ture size approximations though the approximation fac-
tor depends on a surface related constant which can be
potentially huge.

Our analysis is free of any surface dependent constant
and it relates the approximation error to the tangential
and normal scatters separately. Most importantly, the
analysis justifies our choice of polar balls based on near-
est neighbors to approximate the medial axis. Figure 1
and 8 show that this choice is far more superior than the
big Delaunay ball strategy. Experiments with our imple-
mentation [15] of the algorithm confirm this claim for
other models.

2. Preliminaries

2.1 Definitions

ForasetY C R® and a pointz € R3, letd(z,Y) denote
the Euclidean distance of x from Y'; that is,

d(@,Y) = inf {{ly -z}

The set B, = {y |y € R, ||ly — ¢|| < r} is a ball with
radius 7 and center c.

Voronoi and Delaunay diagram. For a finite point set
P C R3, we will denote the Voronoi diagram and its
dual Delaunay triangulation of P by Vor P and Del P
respectively. The Voronoi cell for a point p is denoted as
Vp.

Sampled surface. Let ¥ C R? be a compact smooth
surface without boundary from which the input sample
is derived possibly with noise. Also, assume that ¥ is
connected. The bounded and unbounded components of
R3 \ ¥ are denoted Qr and Qo respectively. The nor-
mal at any point € ¥ is denoted n, which is directed
locally inward, i.e., toward 2.

The medial axis M of ¥ is the locus of the centers of
the maximal balls whose interiors are empty of points
in ¥. These balls meet ¥ only tangentially. We call
each such ball By, , a medial ball where r = d(m, X).
Barring some pathological cases, we can assume M NY
is empty if 3 is smooth. The subsets of M in Q; and
Qo are called inner and outer medial axis respectively.
For each point x € X, there are two medial balls, one
centering a point in the inner medial axis and the other
in the outer medial axis. The local feature size at a point
x € ¥ is defined as f(z) = d(z, M). The function f()
satisfies the following Lipschitz property [2].

Lipschitz property. For any two points z,y € X, f(z) <
f) +llz -yl



2.2 Sampling

A finite set of points P C X is called an e-sample of ¥ if
d(z, P) < ed(xz, M) for each z € ¥. To accommodate
the tangential and normal scatters of points around ¥ in
the noisy case, we put two conditions on the sampling.
The first condition says that the projection of the point
set P on the surface makes a dense sample and the
second one says that P is close to the surface. We
also use a third condition to make the sampling locally
uniform. To make the sampling definition general, we
use a separate parameter for each sampling condition.
For any point z € R® \ M let # denote its closest point
on X. Clearly, the segment zZ is parallel to the normal
nz.

We say P C R3 is a (g, 4, 5)-sample of ¥ if the follow-
ing conditions hold.

() P= {P}pep is an e-sample of T,

(i) [lp —pll < 7 (P).

(iii) ||lp—ql|| > ef(p) for any two points p, ¢ in P where
q is the kth nearest sample point to p.

Figure 2 illustrates why we put the third condition. In
the figure the same point sample satisfies the first two
conditions for two different curves; C and also C U C".
Our analyses for normal and medial axis approximations
apply to both of these curves; albeit with different scales
of local feature sizes. Therefore, the analyses do not
need the third condition in the sampling. However, our
approximation algorithms determine a particular scale
by looking at the nearest neighbor distances. This im-
plies that the sampling cannot allow the ambiguity which
is forced by assuming a local uniformity constraint in the
third one.

C

C’
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Figure 2: A point sample satisfying sampling conditions
(i) and (ii) for a single component curve C' (left) and also
the curve C'U C” (right).

In the analysis we concentrate only in the bounded
component 27 together with the inward normals and in-
ner medial axis. It should be clear that the results also
hold for unbounded component, outward normals and
outer medial axis. For a point z € X, let m, denote the
center of the inner medial ball meeting ¥ at  and p,, its
radius.

It follows almost immediately from our sampling con-
ditions that each point of ¥ and a point not far away from

¥ has a sample point nearby. Lemma 1 and Corollary 2
formalize this idea.

Lemma 1. Any point x € ¥ has a sample point within
e1f(z) distance where €1 = (§ + € + de).

Proof. From the sampling condition (i), we must have a
sample point p so that ||z —p|| < ef(z). Also, ||[p—7|| <
0f (D) <6(1+¢€)f(x). Thus,

llz — pll llz — 5l + (15 — pll
ef(x) +6(1+¢)f(x)

(6 +¢e+d¢e)f(x).
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Since f(z) < p, for any point x € ¥, the following
corollary is immediate.

Corollary 2. Any pointy € R? with ||y — §|| = dpy has
a sample point within e2py distance where 2 = (26 +
€ + de).

3. Empty balls

A ball is empty if its interior is empty of points from P.
A main ingredient in our analysis will be the existence of
large empty balls. They in turn lead to the existence of
large Delaunay balls that circumscribe Delaunay tetrahe-
dra in Del P. The centers of such Delaunay balls which
are also Voronoi vertices in Vor P play crucial roles in
the algorithms for normal and feature estimations. In
this section, we present two lemmas that assure the exis-
tence of large empty balls with certain conditions.
Lemma 3 below assures that for each point x € X
there is a large empty ball of radius almost as large as
(1) f(z) and (ii) p;. Notice the differences between the
distances of these balls from x. Also, see Figure 3.

Lemma 3. A ball By, , is empty of sample points from
P if either
(i) m =z,
or

|lm —z|| = f(z) andr = (1 — 39) f(x),

(ii) m = mg andr = (1 — ) py.

Proof. Let p be any point in P (the left picture of Fig-
ure 3). For (i) we have

f®) < f@) +lle—pll <
< 2f(2) + llm — |-

Then,
lm—=pll > [lm -5l —|lp—5ll > [lm— 5|l - 6(P)
> [lm —pll - 6(2f(z) + [Im — pl[)
= (1-=90)[lm—pll —26f(z)
> (1-30)f(=z)

f(@) + llz = mll + [lm — 5l



Figure 3: Illustration for Lemma 3. The dotted big balls
are not empty of sample points but their slightly shrunk
copies (shown with solid boundaries) are.

as ||m — p|| > ||m — z|| = f(z). Therefore, p cannot be
in the interior of B. Now consider (ii). We get

lme —pll > |lme — 5l — [lp — Bl
> |lms — Bl — 65 (P)
> |lmg = pll = d[lma — |
= (1-9)[lm, -5l
> (1-46)ps

as [[mg = pl| 2 [[me — 2|l = pa-
(]

Next, we show that, for each point = of ¥, there is
a nearby large ball which is not only empty but also
its boundary passes through a sample point close to z.
Eventually these balls will be deformed to Delaunay
balls for medial axis approximations.

Lemma 4. For each point x € X there is an empty ball
B. . with ¢ € ) that enjoys the following properties:

(i) ris at least (1 — 2,/€2)pg, My is in B, and ||c —
mg|| < 2./E2p, where €5 defined in Corollary 2 is
O(e + ),

(ii) its boundary contains a sample point p within a dis-
1
tance €3p, from x where €3 = 2e3% + § and €, §
are sufficiently small.

Proof. Consider the empty ball B = B, gr whose
boundary passes through a point y where § = 2« and
lly — z|| = dp, and R = (1 — &) p;. Such a ball exists
by Lemma 3 (ii) (see Figure 4).

SHRINKING: Fora 8 < 1, let B’ = B,,, gr be a
further shrunk copy of B. The ball B and hence B? are
empty.

RIGID MOTION: Translate B? rigidly by moving the
center along the direction mz2 until its boundary hits a

Figure 4: Illustration for Lemma 4.

sample point p € P. Let this new ball be denoted B, ,
refer to Figure 4.
Obviously r = BR. Letd = ||c—m||. First we claim

(I1-BR<d<(1-PB)R+e2ps

The first half of the inequality holds since B is empty
of samples and hence B? has to move out of it to hit a
sample point. The second half of the inequality holds
since from Corollary 2, a ball centered at y with radius
€2py cannot be empty of samples.

Next we obtain an upper bound on ||y — p||. Refer to
Figure 4. Since [|p' — q|* = [lc — p'II” — [lc — gl =
lIme — p'II” — llms — gl|*, we have

lle=p'II” = lle = gl = B = (llc - qll + d)°

which gives

R? 2 _ 2
fe—ql = Fr
Hence
ly—pl> < ly-2I
= Ip—df +llg—yl
= R—(d+|lc—ql)*+R=(d+lc—ql))?
= 2R’ - Rd-— %(m —r?)
< 2048  po G.1)

(1-86)1-=p)+e2

Since we want both ||c—m|| and ||z — p|| to be small,
we take f =1 — (/g3. Thenr = SR > (1 — 2,/22)p,.
Also [le —mg || < ((1 = 8)v/E2 + e2)ps < 2¢/E2pa,
which is small compared to r given € and § are suffi-
ciently small. So m,, stays inside B ,. In addition, from
inequality 3.1 we have

2 — /&2 1 1
lly — pll < (%%;R < 263 p,.

The bound on ||p — z|| follows as ||z — y|| = dp,. O



Observation: If we choose 3 to be a suitable constant
between between 0 and 1, the above proof gives €3 =
O(y/€2) = O(Ve + ¢) though the radius of the empty
ball becomes a constant fraction of p,. Also, the entire
proof remains valid when we replace p, with f(z).

4. Normal approximation

We will approximate the normals by the vectors from the
sample points toward the centers of the Delaunay balls
incident to them. First, we derive an upper bound on
this normal approximation error in Theorem 1. Then,
we describe a simple algorithm for approximating the
normals whose justification is given by the theorem and
Lemma 4.

4.1 Analysis

The idea is to measure how much one can tilt an empty
ball anchored at a point p with its center in the direction
of ns while keeping it empty. The amount of tilt depends
on how close the sample points are and also how big the
ball is.

Theorem 1. Letp € P be incident to an empty ball B ,
where r > \f(p) and ¢ € Q1. Then,

sin(£t, np) < 2(% +1)(e1 + 2V0) + 0(6) + O(2)

for a sufficiently small e > 0 and § > 0.

Proof. Let B = B, ,. Assume that p¢ makes an angle
B with the normal nj. Let By, and B,,; be two balls
with radius f(p) and tangentially meeting the surface at
point p as Figure 5 shows. Let m be the center of By;.
We know the surface ¥ is outside these two balls. By
Lemma 3 the ball B’ = B(m, (1 — 38) f(p)), a shrunk
ball of By, is also empty of samples. Therefore no
sample point is inside the shaded area, see Figure 5.

Figure 5: Illustration for Theorem 1.

Observation A. As 3 increases, the radius of the inter-
section circle of the boundaries of B and B’ increases,

i.e. ||w — ¢|| increases, and vice versa.

Observation B. Suppose that when ||w — ¢|] =
V/2¢1 f(p) the angle B3 has the claimed bound. Then, if
we show ||w — q|| < v/2¢1 f(p), we are done following
Observation A.

Assume ||w — g|| = v/2e1 f(P). Let z be the intersec-
tion point between ¥ and the segment mc.

Consider the triangle formed by p, m and c. We have

(1=0)f(®) < llm —pll < (1 +6) (D),
lle = pll = lle —wll > Af ()

and also ||¢c — m|| equals
Ve =wl? = [lw = ql? + v/[lm = w|]? = [lw - q|[>.

If B = Zpe,n;,

lle = mll* = lle — pll* — [lm — p|I*
2||e = pll{lm — pl|

cosff =

S (VA2 =282 + /(1 -36)2 —2e3)2 — X2 — (1 +6)?

A1+ 0)
S1-201 4 %)2(51 +2V3) + 0(5%) + O(eH).
Hence
sin 3 30 = cos )
2(1 + %)(61 +2V68) + 0(8) + O(e2).

IN

IN

Now we show that [|Jw — g|| < v/2e1 f(p) as required
by Observation B.

Again, first assume that ||w — ¢|| = v/2e1f(p). We
can show ||p — z|| < 3||p — m|| tan 3. Therefore, from
the bound on f ||p — 2|| = O(e1 + 2/8) f(H) which by
Lipschitz property gives f(z) < v/2f(p) given a suf-
ficiently small 6 and e. We know B, = B(z,e1f(?))
with radius &1 f(2) < v/2¢1 f(p) has to contain at least
one sample point by Lemma 1. This is impossible since
B, has a radius at most v/2¢1 f(p) = ||w — g¢|| which
means it lies completely in the shaded area. Therefore,
lw—q|| # V/2¢1 f(p). Now consider increasing ||w—q]|
beyond this distance while keeping z fixed. Notice that
now z is not the intersection point between ¥ and the
segment mc. It is obvious that B, remains inside the
shaded area. Therefore, again we reach a contradiction
to Lemma 1. Hence [[w — g|| can not be larger than

V2e1 £ (p). O

Implications: Theorem 1 gives a general form of
the normal approximation under a fairly general sam-
pling assumption. One can derive different normal ap-
proximation bounds under different sampling assump-
tions from this general result. For example, if P is a



(g,€%, —)-sample we get an O(g) bound on the normal

approximation error. In case P is a (g, &, —)-sample, we
get an O(4/€) error bound. Another important implica-
tion is that Delaunay balls need not be too big to give
good normal estimates. One can observe that if A is only
\/max{e, 8}, we get O(ez + §4) error. Algorithmic
implication of this fact is that a lot of sample points can
qualify for normal estimation.

Observe that the proof of Theorem 1 remains valid
even if the sample point p is replaced with any point
r € R3 meeting the conditions as stated in the corol-
lary below. We use this fact later in feature estimation.

Corollary 5. Let x € R? be any point with ||z — Z|| <
0pz and B, , be any empty ball incident to x so that
r = Q(pz). Then, Zzt,nz = O(e +/d) for sufficiently
small € and §.

4.2 Algorithm

We know from Theorem 1 that if there is a big Delaunay
ball incident to a sample point p, then the vector from
p to the center of the ball estimates the normal direction
at the point p. On the other hand, the observation after
the proof of Lemma 4 assures that for each pointz € %,
there is a sample point p within O(+v/e + §) f (x) distance
with an empty ball of radius Q(f(z)). This means there
is a big Delaunay ball incident to p where the vector p¢
approximates ng and hence n;. Algorithmically we can
exploit this fact by picking up sample points that are in-
cident to big Delaunay balls only if we have a scale to
measure ‘big’ Delaunay balls. For this we assume the
third condition in the sampling which says that the sam-
ple is locally uniform.

Let A\, be the distance of p to its xth nearest neigh-
bor. By sampling condition A, > ¢ f (). Therefore, any
Delaunay ball incident to p with radius more than 7,
will give a normal estimation with an error 6( L + 1)(e)
according to Theorem 1 under the assumption that P is
a (g,e?, k)-sample. It is important that X, is not arbi-
trarily large since then no Delaunay may qualify for the
size threshold. This concern is alleviated by the fact that
Ay < €' f(p) where e’ = <5 + 143-5:5) e [8].

Notice that the error decreases as 7 increases. How-
ever, as we indicated before ¢ f(p), the radius of the
big Delaunay ball, can be as small as €2 f(§) to give an
O(+/¢€) error. This explains why a large number of De-
launay balls give good normal estimations as Figure 1
illustrates.

APPROXIMATENORMAL (P, 7)
Compute Del P;
fo r eachp € P compute \p;
if there is a Delaunay ball incident to p

with radius larger than 7,
Compute the largest Delaunay ball B, ,.
incident to p;
Approximate the normal direction at p by pc.
endif

Notice that, alternatively we could have eliminated the
parameter 7 in the algorithm by looking for the largest
Delaunay ball incident to a set of k-nearest neighbors of
p for some suitable k. Again, thanks to Lemma 4, we are
assured that for a suitable k, one or more neighbors have
Delaunay balls with radius almost equal to the medial
balls. However, this approach limits the number of sam-
ple points where the normals are estimated. Because of
our earlier observation, the normals can be estimated at
more points where the Delaunay ball is big but not nec-
essarily as big as the medial balls. In contrast, as we see
next, feature estimation needs the Delaunay balls almost
as big as the medial ones.

5. Feature approximation

We approximate the local feature size at a sample point
p by first approximating the medial axis with a set of
discrete points and then measuring the distance of p from
this set. We are guaranteed by Lemma 4 that there are
many sample points which are incident to big Delaunay
balls. The furthest Voronoi vertices from these sample
points in €y and Qo approximate the inner and outer
medial axis respectively. For a point p € P, we call the
furthest Voronoi vertex from p in V,, N Q as the inner
pole pt of p. Similarly one may define the outer pole
p~ of p which resides in Qp.

In line with the previous results on medial axis ap-
proximation [4, 6, 7], we claim that a certain subset of
the medial axis is approximated by poles. Let z and z’
be two points where the medial ball B centered at m
meets X. Call Zxmz' the medial angle at m if it is the
largest angle less than 7 made by any two such points of
BnNX. Let M, C M be the subset where each point
m € M, has a medial angle at least .

5.1 Analysis

We show that each medial axis point m, with a large
enough medial angle is approximated by a pole. The
idea is as follows. Consider the large ball incident to a
sample point p guaranteed by Lemma 4. Then we de-
form it to a large Delaunay ball with the center at p™T.
First, during this deformation the ball cannot be tilted
too much since the vector from p to the center has to
approximate the normal nj; by Theorem 1. Second, the
center in the tilted direction cannot move too much due
to Lemma 6 as stated below. The result of these con-
straints is that the center p* of the Delaunay ball remains



close to the center of the original ball which in turn is
close to m.

Lemma 6. Let B = B, , be an empty ball whose bound-
ary passes through a sample point p. Let z be a point on
¥ whose distance to the boundary of B is less than €' p,
fore' < 1. Let B' = B+ be an empty ball obtained
by expanding B while keeping c' on the ray pt and p on
its boundary. If r > Bp,, then we have

(e1+&N2B8+¢€ —e1)
26(1 — cos £Lpcz) — 2e1 — 2¢' cos Lpez

”C - CI” < z-
Proof. Let y be the closest point to z on the boundary of
B. Obviously y, ¢ and z are collinear. See Figure 6. We
have ||y — z|| < €’p,. Let 2’ be the point where the line
of ¢'z intersects the boundary of B’. Since a ball cen-
tered at z with radius &1 f(z) can not be empty of sample
points by Lemma 1, we have ||z’ — z|| < &1 f(2) < €1p..

Consider the triangle made by ¢, ¢’ and z. For conve-
nience set Zpcz = a, ||l — || = Ag, ||z — 2'|| = Az
and |ly — z|| = Ay. We know

I = z|| = (Ac)® + ||c — z||* + 2Ac]|c — z|| cosa.
This gives
(r+Ac—Az)? = (Ac)* +(r+Ay)* +2Ac(r+Ay) cosa
from which we get

(r+ Ay)? — (r — Az)?
2(r — Az) — 2(r + Ay) cosa
(e1+e)28+¢" —e1)
28(1 — cosa) — 2&1 — 2¢’ cosa’ ~

Ac

IN

by plugging in Az < e1p,, Ay < €'p, and r > Bp,.
o

Figure 6: Illustration for Lemma 6.

Theorem 2. For each point mg, € M, N Q1 where a =
1 1 . . o 1 1

€4 + 44, there is a sample point p within O(€® + 61 ) p,

distance of x so that the pole p*t lies within 0(6% +

1) %)Pz distance from my where € and & are sufficiently

small.

Proof. Consider the ball B = B, guaranteed by
Lemma 4 whose boundary passes through a sample
point p. Its radius 7 is (1 — 2,/22)pz. ||p — || < €3p2
and ||c — mg|| < 2y/E2p,. Let B' = B+ ,» where pt
is the inner pole of p and 7' = ||p — p*||. The ball B’ is
Delaunay and its radius ' > r > (1 — 2,/€2)pa.

Focus on the two balls B and B’ passing through p,
see Figure 7. The ball B has m,, inside it which means
that its radius is at least (1 — §)f(p)/2. So, the ra-
dius of B’ being bigger than that of B is also at least
(1 = 6)f(p)/2. Therefore, by Theorem 1 the vectors p¢
and pp+ make O(e + V/§) angle with n; and at most
double of this angle among them. Let ¢’ be the point on
the segment ppt so that pc’ has the same length as pc.
Clearly,

lle =€l < llp = el Zepe' < (1= 2/22)0(e + V3) o

Now we can bound the distance ||¢ — p™|| if we have a
bound on ||¢' — p*||. We will apply Lemma 6 to the ball
B" = Bei ||p—¢|| to bound ||¢' — pt||. Since m, € M,
there are two points z and 2’ in ¥ so that Zzm,z' > a.
Take z in Lemma 6 as the point z or £’ which makes the
angle Zzm,p at least /2.

With this set up we show that 8 and &' in Lemma 6
are 1 — O(v/e + 0) and O(e + V/§) respectively. Since
the radius of B" is r > (1 — 2,/€2)p, = (1 —2,/€2)p=,
the claim for 8 follows.

Figure 7: Illustration for Theorem 2. The ball B, , is
deformed to the Delaunay ball B’ = B+ ,,. The ball
B" = By |jp—c on the right is a shrunk version of B'.

For &', consider the point y where the ray ¢’z meets the
boundary of B", refer to Figure 7. We have ||¢' —m|| <
lle = mg|| + |lc = ¢|| = O(v/€ + v/8)p, and hence



ly == = llc'—=-Il¢ -yl
< lmg = 2l + [l = mg | = (I =yl
< pa+ O(E+Vo)p. — (1 —2y/E2)p:
= O(Ve+ Vo)p..

So, we can apply Lemma 6 with &’ = O(,/z + v/8), and
B =1—0(ve+ d). Observe that, since the points ¢’

and m, are nearby, the angle Zpc'y is almost equal to
(o7

Zzmgp. So, we can safely assume Zpc'y > §. With
a=¢i + 5%, Lemma 6 gives

(O(c* +62)/Q(et +64))p.

= O(e? +6%)p,.

lp* =<l =

The claim of the theorem follows as

o™ —ma|l < llp* =l + ¢ — me||
= O(e +84)p, + O(e? +82)p,

O(e% +64)p,.

O

For each point x € ¥ where m, € M, the previ-
ous theorem guarantees the existence of a sample point p
whose pole approximates m . Actually, the proof tech-
nique can also be used to show that any Delaunay ball
with radius almost as big as p, and incident to a sample
point close to z has its center close to m.

Theorem 3. Let x € X be a point so that my; € M,
for a = g% + §i. Then for any point p € P within
€3pg distance of x and with an incident Delaunay ball
of radius at least (1 — O(\/€ + V/8) py, the pole p* lies
within O(e¥ + 8% ) p,, distance from m.

sketch. Notice that if nj and n, make small angle, we
will be done. Then, we have two segments ppt and zmn,
almost parallel where p and z are close. Also, these seg-
ments can be shown to be of almost same lengths by the
given condition and a proof similar to that of Theorem 2.
This would imply m,, and pT are close.

Observe that we cannot assert that Znp, n, is small
directly from the normal variation lemma in Amenta and
Bern [2] as the distance among them is at most £3p, by
Lemma 4 (notice p, vs. f(z)). Since p and x are at
most £3p, apart and the distance of p* to p and hence
to z is Q(psz), Zpptz = O(e3). By Corollary 5, it
can be shown that p*tz makes O(,/23) angle with n,,.
Therefore, pp™ makes O(y/€3) angle with n,. It is easy
to show that p, is at least Q(f(5)). So, the angle be-
tween ppt and nj is O(y/g3) = O(e® + 0%). One
can deduce that ||p* — m|| has the claimed bound with

Zns,n, = O(y/3). O

5.2 Algorithm

Theorem 2 and Theorem 3 suggest the following algo-
rithm for feature estimation at any point x € ¥ where
mg € ME%M%' Theorem 2 says that z has a sample
point p within a neighborhood of £3p, whose pole p*
approximates m, . Also, Theorem 3 says that all sam-
ple points within £3p, neighborhood of z with a large
enough Delaunay ball have their poles approximate m,.
Therefore, if we take the pole of a sample point ¢ whose
distance to q is largest among all sample points within a
neighborhood of , we will get an approximation of m.

We search the neighborhood of z by taking &k nearest
neighbors of a sample point s close to z. If we assume
that P is a (g, §, k)-sample for some k > 0, k-nearest
neighbors cannot be arbitrarily close to z. Notice that if
we do not prevent oversampling by the third condition
of noisy sampling, we cannot make this assertion. In the
algorithm, we simply allow an user supplied parameter
k to search the k nearest neighbors. Since we want to
cover all points of 3, we simply take all points of P and
carry out the following computations.

For each point p € P we select k-nearest neighbors
for a suitable k. Let IV, be this set of neighbors. First,
for each ¢ € N,, we determine the Voronoi vertex v,
in V3 which is furthest from ¢. This is one of the poles
of g. Let £1(p) = |lvg — ¢||. Select the point p; € N,
so that ¢; (p1) is maximum among all points in N,. By
Theorem 2 and Theorem 3, v, approximates a medial
axis point m, if z € ME%H%. However, we do not
know if m,, is an inner medial axis point or an outer one.
Without loss of generality assume that m, is an inner
medial axis point. To approximate the outer medial axis
point for z, we determine the Voronoi vertex u, in V for
each ¢ € N, so that qii, makes more than § angle with
P10y, . Let £2(q) = ||lug — ¢l|- Then, we select the point
p2 € N, so that £5(p2) is maximum among all points in
Np,. Again, appealing to Theorem 2 and Theorem 3 for
outer medial axis, we can assert that up, approximates a
medial axis point for z.

APPROXIMATEFEATURE(P, k)
Compute Del P; L := ¢;
for each p € P compute k nearest neighbors N;
compute p; € N, whose distance to
its pole vy, is maximum
among all points in N,;
compute p; € N, with a pole v, so that
Zp21—)‘p27p16pl > % and ||p2 — Upsy ||
is maximum among N,,;
L:= LU {vp,,vp, };
endfor
for each p € P compute the distance of p to L.

As we have observed already, a subset of the medial



Figure 8: Left: Medial axis approximated by centers of big Delaunay balls for a noisy HORSE. For a chosen threshold,
some parts of the legs do not have medial axis approximated though still many centers lie near the surface. Right:
Medial axis well approximated by the poles as computed by APPROXIMATEFEATURE.

axis is not approximated by the poles. These are exactly
the points on the medial axis which have a small medial
angle. This type of exclusions are also present in earlier
medial axis approximation results [4, 6, 7]. The implica-
tion of this exclusion is that features cannot be properly
estimated for points whose closest point on the medial
axis resides in the excluded part. However, if the sam-
pling is sufficiently dense, the excluded part is indeed
small in most cases. Figure 8 shows the result of feature
approximations for a model in three dimensions.
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